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Abstract. In statistical reasoning, hypothesis testing is of particular importance for decision-making. Based on

the p-value, the null hypothesis significance testing (NHST) is the most common approach. Bayesian analysis,

which makes use of the Bayes factor, is an alternative, but less popular method. The goal of this work is to present

a brief comparison of the frequentist perspective based on the p-value (NHST) and the Bayesian perspective based

on the Bayes factor. A few examples are given to illustrate some of the differences between each concept and its

own characteristics. Readers are intended to be able to perceive some of those differences, their advantages and

disadvantages, as well as their limitations, so that both techniques can be applied with discretion and criticism,

enabling better decisions to be made in a range of circumstances.
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1 Introduction

Correct data-driven decision-making is critical in a wide range of professional and scientific fields.
Hypothesis testing is one of the statistical procedures used to achieve this goal. However, there
is no single solution that fits all cases (Gigerenzer et al., 2004). Often, descriptive statistics
and exploratory data analysis are enough, and there is no need for hypothesis testing. But
when resourcing on it, one has to be able to interpret the results correctly. Many people use
the frequentist technique based on the p-value to test hypotheses, whereas others prefer the
Bayesian approach based on the Bayes factor. Understanding the strengths and weaknesses of
each approach allows one to make more accurate decisions.

The purpose of this paper is not to provide a comprehensive treatment of the subject or a
tutorial on it, but rather to provide some examples to highlight some advantages and limitations
of the null hypothesis significance testing (NHST) and the Bayesian approach to data testing,
that will, hopefully, encourage researchers and professionals to question some of the results
reached through their analysis, in order to ensure that proper conclusions are drawn based on
the data.

A brief review of the NHST and the Bayesian approach is described herein. There are a
number of other publications available that provide a more thorough review and discussion
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(Perezgonzalez, 2015; Malone & Coyne, 2020; Goodman, 1999a,b; Bayarri & Berger, 2004; Gib-
son, 2021; Lakens, 2021; Schmalz et al., 2021; Muff et al., 2022; Wong et al., 2022).

1.1 Null Hypothesis Significance Testing (NHST)

The NHST is the most widely used method for testing hypotheses, and it is a hybrid of Fisher
and Neyman-Pearson procedures. However, it is not well defined, and it may favor one approach
over the other (Perezgonzalez, 2015). The conclusions are based on the p-value, which is the
probability of getting data at least as extreme as the one seen if the null hypothesis H0, is true.
That is, p-value = P (x + |H0), where x+ denotes the data observed or more extreme data.
The effect size (practical effect) and statistical power (probability of rejecting correctly the null
hypothesis H0) are optional and not required (although recommended) in NHST (Perezgonzalez,
2015).

NHST is frequently carried out after establishing a statistical null hypothesis of no effect.
The null hypothesis, H0, is then accepted or rejected by comparing the p-value with a threshold
significance level, which is typically set at 5%. The result is considered significant if the p-value
is less than the significance level, and the null hypothesis, H0, is not accepted. A low p-value
means that the data observed or more extreme data is uncommon under H0. As described next,
some drawbacks of the p-value are highlighted by the definition.

The p-value is a function of the randomly observed data under H0. It is a random variable
whose distribution under H0 is uniform, and therefore cannot give evidence for H0 or against H1

(Johansson, 2011). It tells nothing about the data under H1, and it doesn’t tell one how likely
either hypotheses is accurate (Goodman, 1999a). The results of a single experiment cannot be
used to calculate the probability that a conclusion is correct. Additionally, a low p-value or
a significant finding does not imply that the effect is helpful or noteworthy. The p-value does
not provide information on the effect size or the precision of the effect (Cumming, 2011, 2014).
Finally, it assesses evidence by accounting for data that are not observed (more extreme data).

1.2 Bayesian approach

The fundamental addition to the Bayesian statistical approach is the inclusion of prior beliefs
before collecting the data. Initially, there must be a distribution of credibility of the parameter
values, called the prior distribution. This is the most common disadvantage pointed to this
framework. Bayesian inference comprises the reassignment of the credibility of the parameter
values, consistent with the data collected, called the posterior distribution.

Evidence is assessed using the Bayes factor (BF 01), which was developed by Jeffreys (1961).
It allows for the quantification of the relative comparison of the predictive performance of the
data x for the null hypothesis H0 against that for the alternative hypothesis H1. This alternative
metric of the p-value is computed as the ratio of two marginal likelihoods, the likelihoods of
the data under each of the two hypotheses. That is, BF 01 = f(x|H0)/f(x|H1). In other words,
the Bayes factor quantifies the degree to which the data are more likely under one hypothesis
versus another (Jeffreys, 1961; Goodman, 1999b; Ly et al., 2016; Etz & Vandekerckhove, 2018).
According to Lee & Wagenmakers (2014), the Bayes factor BF 01 provides moderate evidence
for H0 if its value is above 3 and strong evidence if it is above 10, or moderate evidence for
H1 if its value is below 1/3 and strong evidence if it is below 1/10. In summary, the Bayesian
factor can quantify evidence for both the null and alternative hypotheses, whereas the NHST’s
p-value can only quantify evidence against the null hypothesis.

On the other hand, the Bayes factor, for an alternative composite hypothesis, is particularly
sensitive to the prior distribution. This is an issue, especially when there is little prior knowledge
of the model. However, the lower bound for the Bayes factor BF 01, which is the minimum across
all the odds of the data likelihood of H0 to H1 (minimum Bayes factor, MBF), is independent of
the prior (Harvey, 2017) and evaluates the strongest evidence against the null hypothesis. It is
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calculated by concentrating the prior distribution of the alternative hypothesis at the maximum
likelihood estimate of the data.

Unlike NHST, the Bayesian approach allows for the computation of the posterior probability
of any of the hypotheses, P (H|x), where H is the hypothesis and x is the data collected.

In a nutshell, Bayesian statistics use the Bayes rule to allow one to change prior beliefs
in light of new information (data), so answering a crucial topic not addressed by the other
approach: the probability of the hypotheses given the observed data. In addition, unlike the
p-value, Bayesian inference never uses the more extreme data (data not observed).

2 Material and Methods

The following seven examples were chosen in order to meet the goals of this paper.

2.1 Example 1

Consider the following hypotheses:

H0 : John does not have disease A

H1 : John has disease A

Consider the information gathered by a diagnostic test, where:

sensitivity = P (test positive|John has disease A) = 0.99, and

specificity = P (test negative|John does not have disease A) = 0.97.

Furthermore, it is known that disease A has a prevalence of 1% for the risk group to which
John belongs. The test turned out to be positive. The p-value is then given by:

p-value = P (test positive|John does not have disease A) = 1− specificity = 0.03.

It is worth noting that the p-value ignores the test’s sensitivity. This low p-value (below
the generally used threshold of 5%) indicates that the sample data does not support the null
hypothesis. As a result, evidence exists against H0. That is all there is to it. It would be
a mistake to conclude that the alternative hypothesis H1, which states that John has disease
A, is true. The p-value does not provide information about the veracity or probability of the
hypotheses.

The Bayes factor suggests strong evidence for H1, pointing in the same direction as the
p-value:

BF 01 = P (test positive|John does not have diseaseA)
P (test positive|John has disease A) = 1−specificity

sensitivity = 0.03
0.99 = 1

33 .

The Bayesian technique, unlike the p-value, allows one to turn the evidence provided by the
Bayes factor into a probability for the hypotheses. Calculating the posterior odds is as follows:

Odds(John does not have disease A|test positive) =
= BF 01 ×Odds(John does not have disease A) = 1

33 ×
0.99
0.01 = 3.

Calculating the posterior probability of H0 and H1:

P (John does not have diseaseA|test positive) = Odds
1+Odds = 3

1+3 = 0.75;
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P (John has disease A|test positive) = 1− 0.75 = 0.25.

These same probabilities could be achieved by applying Bayes’ theorem (Stone, 2013).

As can be seen, the probability that John has disease A increased from 1% to 25% after
receiving the positive test result. However, despite a positive test, John has a higher probability
of not having disease A. Despite the evidence against the null hypothesis, the rejection of the
null hypothesis is not able to overcome the low prior probability of the alternative hypothesis.

If the test turns out to be negative, the p-value is one, indicating that there is no evidence
that John has disease A, but it says nothing about the evidence that John does not have disease
A:

p-value = P (test negative or positive|John does not have disease A) = 1.

The Bayes factor, on the other hand, reveals that the null hypothesis that John does not
have disease A is quite strong:

BF 01 = P (test negative|John does not have disease A)
P (test negative|John has disease A) = specificity

1−sensitivity = 0.97
0.01 = 97.

Furthermore, the posterior odds and posterior probability support this conclusion:

Odds(John does not have disease A|test negative) =
= BF 01 ×Odds(John does not have disease A) = 97× 0.99

0.01 = 9603;

P (John does not have disease A|test negative) = Odds
1+Odds = 9603

1+9603 = 0.999896.

The p-value only provides information for the evidence against H0, while the Bayes factor
provides information for both H0 and H1. If the test turns out to be negative, the evidence is
against H1 and in favor of H0, according to the Bayes approach.

2.2 Example 2

Consider the same hypotheses:

H0 : John does not have disease A

H1 : John has disease A

Assume that a diagnostic test is ineffective, meaning that the result is 95% negative and 5%
positive, regardless of whether or not the patient has disease A. The p-value for a positive test
in this scenario is:

p-value = P (test positive|John does not have disease A) = 0.05.

For a level of 5%, this is a significant result. As the test does not provide information about
disease A, it does not make sense to state that the evidence points to John having disease A.
The Bayes factor, on the other hand, is one, indicating that no evidence exists for or against
any of the hypotheses:

BF 01 = P (test positive|John does not have disease A)
P (test positive|John has disease A) = 0.05

0.05 = 1.
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2.3 Example 3

Consider the following hypotheses for determining whether a coin is fair:

H0 : The coin is fair

H1 : The coin is not fair

A researcher flipped the coin 165 times to choose between the hypotheses. The random
variable X, that represents the number of heads in 165 tosses, follows a binomial distribution
under H0, with a probability π = 0.5 for a single flip being the head. There were 65 heads and
100 tails in the experience. Computing the p-value:

p-value = 2× P (X̄ ≤ 65|π = 0.5) = 0.0079

Because the p-value is 0.0079, a statistically significant result for a cut-off level of 0.01 and
0.05, the null hypothesis is rejected, and the coin is classified as not fair. The evidence is
overwhelming against H0, which states the coin is fair.

Applying the Bayesian binomial test implemented in the free software JASP (0.16.2), and
assuming a uniform prior distribution, BF 01 = 0.250, that is, the data are approximately 4
times more likely under H1 than under H0. The evidence supporting the alternative hypothesis
is at best moderate. Assuming a beta distribution for the prior with parameters α = β = 10,
BF 01 = 0.108, indicating that the data are roughly 9.3 times more likely under H1 than under
H0, providing moderate to strong evidence in support of H1. The prior used in a Bayesian
analysis do have an impact on the evidence. It is essential to select an appropriate prior.
However, as can be seen, even a very low p-value does not always imply strong evidence against
the null hypothesis.

2.4 Example 4

Consider the following hypotheses for the mean of a normal population with a known standard
deviation of 5.5:

H0 : µ = 20

H1 : µ = 26

A total of 40 individuals were gathered for the study. The sample mean was x̄ = 23. Com-
puting the unilateral p-value:

p-value = P (X̄ ≥ 23|µ = 20) = 0.00028.

The p-value obtained of 0.00028 denotes very strong evidence against H0, and therefore
µ = 26 must be the correct population mean value. The sample mean, on the other hand, is
exactly halfway between the two hypothetical values defined in the hypotheses. Because the z
statistic’s distribution is symmetric, if the hypotheses are swapped, the p-value will remain the
same, implying that µ = 20 must be the correct value for the mean. This appears to make no
sense whatsoever. Because the data is only ever compared to H0 and never to H1, this occurs.

On the other hand, the Bayes factor equals one for the original hypotheses (and for the
swapped one), revealing no definite evidence for any of the hypotheses (being f the normal
probability density function):

BF 01 = f(23|µ=20)
f(23|µ=26) = 1.
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Figure 1: Factor Robustness Check in JASP 0.16.2. The inverse of Bayes factor BF 01, Bayes factor
BF 10, is depicted.

2.5 Example 5

Let one take a look at these hypotheses for the mean of a normal population:

H0 : µ = 20

H1 : µ 6= 20.

A sample of n = 2000 was collected. The sample standard deviation was s = 20, and the
sample mean x̄ = 21. The t statistic is 2.236, and the associated p-value is 0.025, which is a
significant result at the 5% level:

p-value = 2× P (X̄ ≥ 21|µ = 20) = 0.025.

By checking, in the free JASP software, ‘Factor Robustness Check’, the Bayes factor for
different values of the Cauchy prior width shows that the evidence is at most moderate in favor
of H0 and only for minimal values of the Cauchy prior width shows evidence anecdotal against
H0 (Figure 1). The conclusions drawn differ significantly from those obtained using the p-value.

2.6 Example 6

Consider the following hypotheses for the proportion of a binomial population:

H0 : π = 0.05

H1 : π < 0.05

Consider the 5% significance threshold. A sample of n = 50 was collected. There was no
success recorded, hence the p− value is the lowest possible. The p− value is given by P (p̂ = 0)
where p̂ follows a binomial distribution with n = 50 and π = 0.05. Therefore, p−value = 0.077.
It does not meet the 5% significance threshold and due to the fact that its value is the minimum
achievable, the result can not be significant for this level. The sample size is too small to
achieve a significant result, that is, the outcome is always known beforehand. With this small
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sample size, the test is worthless at the 5% significance level, because it cannot rule out the null
hypothesis.

Applying the Bayesian binomial test implemented in the free software JASP and assuming a
uniform prior distribution, the value achieved by the Bayes factor, BF 01 = 0.212, indicates that
the data is approximately 4.7 (1/0.212) times more likely under H1 than under H0. Contrary to
what occurred with the p− value, the small sample size does not dismiss any of the hypotheses
in advance.

2.7 Example 7

This last example was taken from Stone (2013). A patient displays spots on the body and face
similar to those observed in smallpox and chickenpox. A test is carried out:

H0 : the patient has chickenpox

H1 : the patient has smallpox

Following Stone (2013), P (spots|chickenpox) = 0.8 and P (spots|smallpox) = 0.9, which
means that the likelihood is higher for smallpox than for chickenpox.

Since p-value = P (spots|chickenpox) = 0.8, there is no evidence that the patient is infected
with smallpox.

When the hypotheses are switched, the p-value is 0.9, and the conclusion is that there is no
evidence that the patient has chickenpox.

There are no test conclusions in this case for the NHST test.

The same conclusions are achieved with the Bayes factor, which is given by:

BF 01 = P (spots|chickenpox)
P (spots|smallpox) = 0.8

0.9 = 0.889
and, when the hypotheses are switched, by BF 01 = 1.125

Because the Bayes factor is close to one, no choice is made between the hypotheses also.

However, when the real probability of the patient having each of the diseases is calculated,
the picture changes. Given the prior probabilities:

P (smallpox) = 0.0011 and P (chickenpox) = 0.1, the posterior probabilities of the patient
having each of the diseases are (they can be obtained using the prior odds and the Bayes factor
or using the Bayes’ theorem (Stone, 2013), as in the example of subsection 2.1):

P (smallpox|spots) = 0.012 and P (chickenpox|spots) = 0.988.

These values indicate that the patient has a very low chance of having smallpox and a huge
one of having chickenpox.

3 Discussion and Conclusion

Because a low p-value says nothing about evidence against H1, it can exaggerate the evidence
against the null hypothesis H0. The p-value also uses data that is not observed (more extreme
data). It also has the disadvantage of not accounting for the magnitude of the effect. A small
effect in a large sample size study and a large effect in a small sample size study can both have
the same p-value (Goodman, 1999a). Finally, the p-value does not answer the main question
of inductive inference: how probable is the research hypothesis H1 (the implicit alternative
hypothesis) in light of the data? (Page and Satake, 2003).

Prior parameters and effect sizes can be adjusted for any amount of fresh data in Bayesian
analysis to give posterior uncertainty. Bayes factor compares and contrasts the predictive ability
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of two competing hypotheses, providing relative evidence for both. The main disadvantage is
that prior assumptions and probabilities are required.

Both approaches, however, can be valuable and should be utilized with the necessary knowl-
edge of their benefits and downsides, so that both procedures are used critically, allowing better
decisions to be made.
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